

Abordagem analítica para obtenção de parâmetros relevantes do fluxo e transporte de gases em meio poroso não-saturado

Moisés Antônio da Costa Lemos

Engenheiro Civil, Universidade de Brasília, Brasília, DF, Brasil, moisesaclemos@gmail.com

Luciano Soares da Cunha Professor Associado, Universidade de Brasília, Brasília, DF, Brasil, soares.cunha.l@gmail.com

André Luís Brasil Cavalcante Professor Associado, Universidade de Brasília, Brasília, DF, Brasil, abrasil@unb.br

RESUMO: O fluxo em meios não saturados são de grande importância pela facilidade de encontrar solos nesse estado na natureza. Embora o fluxo de água seja amplamente estudado e possuir diversas abordagens para o entendimento falta-se trabalhos que consigam prever parâmetros de gases presentes na fase gasosa. Dessa forma, este trabalho propõe uma abordagem analítica na obtenção de parâmetros relevantes para o entendimento e descrição do fluxo e transporte de gases em meios porosos não saturados.

PALAVRAS-CHAVE: Transporte de gases, não-saturado, modelo analítico.

1 INTRODUÇÃO

Os meios porosos não saturados são de grande relevância para a engenharia geotécnica devido sua ampla ocorrência e as complexidades de se entender os fenômenos que ocorrem nos solos que se encontram nesse estado. Dessa forma, principalmente as propriedades hidráulicas e mecânicas têm importantes dependências do grau de saturação (S_w) que encontra-se o solo.

Nesse contexto, o fluxo em meios porosos não saturados são relevantes para a solução de diversos problemas e obtenção de parâmetros como teor de umidade volumétrica da água (θ_w), sucção e condutividade hidráulica não-saturada (k_{zw}). Assim, para um completo entendimento desse fenômeno está associado a solução da Equação de Richards que descreve o fenômeno de infiltração de água em solos não saturados. Contudo a dificuldade encontra-se na solução da equação sendo sua solução o objetivo de diversos trabalhos (Ross & Parlange, 1994, Rathie, et al., 2012, Swamee, et al., 2014). Dentre as abordagens de solução da equação de Richards encontra-se as metodologias analíticas. Assim, Cavalcante e Zornberg (2017) propõem soluções analíticas para a Equação de Richards em condições de contornos diferentes. Nas diversas soluções são propostas maneiras de se obter a sucção do solo (ψ), θ_w e k_{zw} de forma transiente.

Segundo Borges (2016), tem se como vantagem obter uma forma fechada da solução da Equação de Richards a facilidade na avaliação paramétrica e validação das abordagens numéricas, permitindo comparação entre soluções analíticas e numéricas.

Dessa forma, segundo Rojas (2017) embora o modelo não seja adequado para solos tropicais esse pode ser utilizado pois consegue definir de forma simples e coerente o comportamento físico das propriedades relacionadas às macro porosidades do solo. Contudo, apesar da descrição do processo de infiltração e das propriedades hidráulicas, o modelo analítico transiente de Cavalcante e Zornberg (2017) não chega abordar o fluxo e transporte da fase gasosa. Portanto, esse trabalho traz uma descrição complementar a esse trabalho e permitindo a obtenção de parâmetros da fase gasosa os quais são pertinentes para o solucionar problemas de fluxo e transporte de gases em meio não saturado.

2 SOLUÇÃO DA EQUAÇÃO DE RICHARDS SEGUNDO CAVALCANTE E ZORNBERG (2017)

A equação de Richards é formulada levando-se em consideração um Volume Elementar Representativo (VER) de um meio poroso não saturado e do balanceamento nesse. Além disso, a velocidade em meio poroso não saturado pode ser descrito pela lei de Darcy-Buckinham (Buckinham. 1902). Por meio dessas considerações а Equação de Richards unidimensional pode ser demonstrada por:

$$\frac{\partial \theta_{w}}{\partial t} = \frac{\partial}{\partial z} \left[k_{zw} \left(\psi \right) \left(\frac{1}{\rho_{w}g} \frac{\partial \psi}{\partial z} - 1 \right) \right]$$
(1)

onde:

 θ_w = teor de umidade volumétrica da água [L³L⁻];

t = tempo[T];

z = elevação acima de um datum [L];

 k_{zw} = condutividade hidráulica não-saturada da água [LT⁻¹]; ρ_w = massa específica da água [ML⁻³];

g = aceleração da gravidade [LT⁻²];

 ψ = sucção do solo [ML⁻¹T⁻²].

Dessa forma, por meio de manipulações matemáticas Cavalcante e Zornberg (2017) propõem que a curva de retenção do solo pode ser obtida por:

$$\psi(\theta_w) = \frac{1}{\delta} \ln\left[\frac{\theta_w - \theta_r}{\theta_s - \theta_r}\right]$$
(2)

onde:

 θ_r = teor de umidade volumétrica residual [L³L⁻

³]; θ_s = teor de umidade volumétrica saturado [L³L⁻ ³];

 δ = parâmetro de ajuste hidráulico [M⁻¹LT²].

Além disso, propuseram uma relação analítica também para a condutividade hidráulica nãosaturada (k_{zw}):

$$k_{zw}(\theta_w) = k_s \left(\frac{\theta_w - \theta_r}{\theta_s - \theta_r}\right)$$
(3)

onde:

 $k_s = é$ a condutividade hidráulica saturada [LT⁻¹].

A metodologia usada por Cavalcante e Zornberg (2017) para a solução da Eq. (1) partiu-se de manipulações matemáticas que permitisse que a equação de Richards fosse análoga a equação da advecção-dispersão de transporte de contaminantes. Assim, a Eq. (1) resolvida obteve a seguinte forma:

$$\frac{\partial \theta_w}{\partial t} = \bar{D}_z \frac{\partial^2 \theta_w}{\partial z^2} - \bar{a}_s \frac{\partial \theta_w}{\partial z}$$
(4)

onde:

 D_z = constante de difusão não-saturada da água na direção *z*;

 \overline{a}_s = constante de advecção da infiltração não saturada. Ambas podem ser obtidas pelas seguintes equações:

$$\bar{D}_{z} = \frac{k_{s}}{\delta(\theta_{s} - \theta_{r})\rho_{w}g}$$
(5)

$$\overline{a}_{s} = \frac{k_{s}}{\left(\theta_{s} - \theta_{r}\right)} \tag{6}$$

A partir dessa metodologia usada, a Equação (4) foi resolvida analiticamente por meio de 4 soluções de contorno diferentes. Rojas (2017) utiliza o caso 4 para resolver problemas de infiltração advindo de precipitações.

No caso 4 considerou-se uma coluna de comprimento finito (L) e constante velocidade de descarga na fronteira superior. A condição inicial

é definida por um teor de umidade uniforme ao longo da coluna definido por:

$$\theta_w(z,0) = \theta_i \tag{7}$$

onde:

 θ_i teor de umidade volumétrica inicial [L³ L⁻³].

A condição de contorno na superfície superior da coluna foi adotado a condição de Neumann, a qual considera uma velocidade de descarga constante (Figura 1). Assim, os autores definem a velocidade máxima de descarga que o solo pode receber por:

$$v_{0,máx} = \frac{\theta_s k_s}{\left(\theta_s - \theta_r\right)} \tag{8}$$

onde:

 v_0 = velocidade de descarga da água [LT⁻¹];

Figura 1. Condição de contorno e inicial para uma coluna de solo finita (Rojas, 2017).

A condição de contorno da superfície superior da coluna é assumida como uma região impermeável. Portanto, não há variação do teor de umidade volumétrica no espaço:

$$\frac{\partial \theta_{w}}{\partial z}(L,t) = 0 \tag{9}$$

onde:

L é o tamanho do perfil ou coluna [L].

Por fim, com as considerações das condições de contorno e inicial a solução analítica de Cavalcante e Zornberg (2017) torna-se:

$$\theta_{w}(z,t) = \theta_{i} + \left[\frac{v_{0}}{k_{s}}(\theta_{s} - \theta_{r}) - \theta_{i}\right]D(z,t)$$
(10)

onde o termo D(z,t) é dado por:

$$D(z,t) = \frac{1}{2} \operatorname{erfc}(Z_{-1}) + \sqrt{\frac{\overline{a}_{s}^{2}t}{\pi \overline{D}_{z}}} \exp\left[-\frac{(z-\overline{a}_{s}t)^{2}}{4\overline{D}_{z}t}\right]$$
$$-\frac{1}{2}\left(1 + \frac{\overline{a}_{s}z}{\overline{D}_{z}} + \frac{\overline{a}_{s}^{2}t}{\overline{D}_{z}}\right) \exp\left(\frac{\overline{a}_{s}z}{\overline{D}_{z}}\right) \operatorname{erfc}(Z_{+1})$$
$$+ \sqrt{4\frac{\overline{a}_{s}^{2}t}{\pi \overline{D}_{z}}} \exp\left[1 + \frac{\overline{a}_{s}}{4\overline{D}_{z}}(2L - z + \overline{a}_{s}t)\right]$$
$$\times \exp\left[\frac{\overline{a}_{s}L}{\overline{D}_{z}} - \frac{1}{4\overline{D}_{z}}(2L - z + \overline{a}_{s}t)^{2}\right]$$
$$- \frac{\overline{a}_{s}}{\overline{D}_{z}}\left[2L - z + \frac{3\overline{a}_{s}t}{2} + \frac{\overline{a}_{s}}{4\overline{D}_{z}}(2L - z + \overline{a}_{s}t)^{2}\right]$$
$$\times \exp\left(\frac{\overline{a}_{s}L}{\overline{D}_{z}}\right) \operatorname{erfc}\left(\frac{2L - z + \overline{a}_{s}t}{2\sqrt{\overline{D}_{z}t}}\right)$$
(11)

3 OBTENÇÃO DE PARÂMETROS DA FASE GASOSA

A obtenção de parâmetros relevantes ao fluxo e transporte de gases são muitas vezes difíceis devido à complexidade de ensaios seja em campo ou laboratório. Assim, maneiras indiretas de se determiná-los são importantes para o entendimento e a determinação da concentração desses gases em meios porosos, como por exemplo, em aterros sanitários e locais sujeitos a contaminação por gases.

Portanto, o processo aqui considerado será primeiramente a obtenção do teor de umidade volumétrica do ar (θ_a) , relações constitutivas da sucção com θ_a e o fator de tortuosidade (τ) da fase gasosa.

3.1 Teor de Umidade Volumétrica do ar (θ_a)

A principal consideração nesse trabalho será que os fluidos que preenche os poros do solo são somente a fase gasosa e pela água. Dessa forma, tem-se que a soma do grau de saturação de ambos os fluidos será igual a 100%. Portanto, pode-se dizer:

Portanto, o teor de umidade volumétrica do ar será a diferença entre o teor de umidade volumétrico saturado e o da água.

Dessa forma, as equações (2) e (3) podem ser reescritas em termos do teor de umidade volumétrica do ar (θ_a) tornando-se respectivamente:

$$\psi(\theta_a) = \frac{1}{\delta} \ln \left[1 - \frac{\theta_a}{\theta_s - \theta_r} \right]$$
(12)

$$k_{zw}(\theta_a) = k_s \left(1 - \frac{\theta_a}{\theta_s - \theta_r} \right)$$
(13)

3.2 Fator de Tortuosidade (τ)

A metodologia utilizada de obtenção do θ_a possibilita obter de forma direta, por exemplo, o fator de tortuosidade (τ). Assim, formas empíricas do fator de tortuosidade são de útil utilização por sua simplicidade. Portanto, Millington (1959) propôs uma forma de obtê-lo e com as considerações da variação unidimensional e transiente tem-se:

$$\tau(z,t) = \frac{\left[\theta_a(z,t)\right]^{\frac{10}{3}}}{n^2} \tag{14}$$

4 AVALIAÇÃO PARAMÊTRICA

O estudo paramétrico realizado nesse trabalho consiste em uma extensão do estudo de Cavalcante e Zornberg (2017). Dessa forma, os valores aqui adotados para *L*, θ_r , θ_s , θ_i , $k_s \in v_0$ - serão 0,5 m, 0.04, 0.41, 0.13, 8.2 x 10⁻⁷ m/s e 5.7 x 10⁻⁷ m/s, respectivamente. Da mesma forma, diferentes parâmetros hidráulicos (δ) serão utilizados (δ = 0.003, 0.03 e 0.3 kPa⁻¹).

A Fig. 2 mostra tanto a variação do teor de umidade volumétrica da água (θ_w) no tempo em diferentes posições, *z*, (Fig. 2a) quanto o perfil do θ_w ao longo da coluna para tempos crescentes (Fig. 2b). Ambas figuras representam o caso em

que existem componentes do fluxo advectivo e dispersivo em que o parâmetro de ajuste hidráulico (δ) era 0.03 kPa⁻¹.

Figura 2. (a) histórico temporal da variação do θ_w em diferentes posições (com $\delta = 0.03$ kPa⁻¹ fixo). (b) perfil do θ_w ao longo da coluna em tempo crescente.

A contribuição desse trabalho é o proposto pela Eq. (14), dessa forma após a obtenção de θ_w foise obtido o teor de umidade volumétrica do ar (θa) . A Fig. 3(a) refere-se ao perfil do θ_a ao longo da coluna em tempo crescente e a Fig; 3(b) à va riação de θ_a ao longo do tempo em diferentes posições. Caso o fluxo da água se dê somente por fluxo advectivo ou dispersivo fará com que θ_a tenha diferentes comportamentos como mostra as Fig. 3(b) e 3(c). Quando somente há fluxo dispersivos da água (Fig. 3b) é possível notar que necessitasse uma grande quantidade de tempo para haver variação do θ_a o que está relacionado com o espalhamento da água. Contudo, no caso em que há somente a parcela advectiva (Fig. 3c) tem-se uma grande variação do θ_a devido à ausência do espalhamento da água

Na Fig. 4 está representado a variação do θ_a ao longo do tempo (Fig. 4a) e ao longo da coluna (Fig. 4b), mostrando o efeito que o parâmetros

Figura 3. (a) perfil do θ_a ao longo da coluna em tempo crescente e (b) histórico temporal da variação do θ_a em diferentes posições (com $\delta = 0.03$ kPa⁻¹ fixo) considerando os componentes de fluxo advectivo e dispersivo da água; (c) somente fluxo dispersivo; (d) somente fluxo advectivo.

de ajuste hidráulico (δ) têm sobre ele. Dessa forma, o tipo de solo tem grande efeito sobre o θ_a e mostrando a importância da curva de retenção e dos micro e macro poros do solo.

Figura 4. Histórico temporal da variação do θ_a em z = 0.25 m (a) e perfil do θ_a ao longo da coluna (b), em ambos casos adotando-se diferentes valores de δ .

Além disso, a partir da Fig. 4 conclui-se que quanto maior o δ , mais brusca é a queda do θ_a o que está relacionado com o valor da entrada de ar no solo.

Na Fig. 5 está representado a variação do grau de saturação do ar (S_a) em relação ao tempo (Fig. 5a) e o efeito de δ na sua obtenção. É possível ver que o fenômeno de infiltração no solo ocasiona em uma diminuição do S_a o que mostra a correta simulação do problema.

A Fig. 6 consta outro parâmetro de importante obtenção em problemas de fluxo e transporte de gás que é o fator de tortuosidade. Assim como foi sugerido pela Eq. (14), o τ tem grande dependência do teor de umidade volumétrica do ar ou da água. Dessa forma, a variação do τ com o tempo em diferentes posições (z) está presente na Fig. 6(a). Além disso, a diminuição do τ está corretamente prevista, uma vez que com a infiltração os caminho para o ar percorrer decrescem com o aumento da quantidade de água. Na Fig. 6(b) está presente o efeito do δ no fator de tortuosidade. Portanto, mostrando que assim como dito anteriormente a queda se torna mais acentuada com o aumento de δ .

Figura 5. (a) histórico temporal da variação do S_a em diferentes posições (com $\delta = 0.03$ kPa⁻¹ fixo); (b) histórico temporal da variação do S_a adotando-se diferentes valores de δ em z = 0.25 m.

Por fim, a solução analítica apresentada torna-se facilmente aplicável para obtenção de parâmetros relevantes nos problemas de fluxo e transporte de gases. Além disso, mostra a importância do processo de infiltração para um completo entendimento do fluxo de gás.

5 CONCLUSÃO

Neste trabalho foi proposto uma solução analítica para obtenção de parâmetros necessários para a descrição do problema de fluxo e transporte de gases. Assim, interpretações do teor de umidade volumétrica do ar (θ_a) ao longo do tempo e ao longo da coluna foram examinadas e o efeito desse sobre o fator de tortuosidade (τ). Além disso, uma análise paramétrica foi conduzida para entendimento do efeito do parâmetro de ajuste hidraulico (δ) sobre θ_a .

Figura 6. (a) histórico temporal da variação do τ em diferentes posições (com $\delta = 0.03$ kPa⁻¹ fixo); (b) histórico temporal da variação do τ adotando-se diferentes valores de δ em z = 0.25 m.

Dessa forma, viu-se que uma correta descrição do problema foi obtida a partir do fenômeno de infiltração e esse efeito na fase gasosa. Obtevese também os efeitos sobre θ_a das parcelas advectivas e dispersivas da água, individualmente e conjuntamente.

Por fim, foi possivel concluir que o valor de entrada de ar tem importantes efeitos sobre o fluxo de água e ,consequentemente, sobre o fluxo de gás. Portanto, mesmo com simplificações do modelo foi possivel relevantes conclusões e sensibilidade sobre parâmetros da fase gasosa.

AGRADECIMENTOS

Os autores agradecem ao Departamento de Geotecnia da Universidade de Brasília (UnB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Companhia Energética de Brasília (CEB) pelo apoio.

REFERÊNCIAS

- Borges, L. P. F., (2016). Método Discreto Iota-delta: uma nova abordagem numérica para o problema de fluxo não saturado em meios porosos e fraturados. Dissertação de Mestrado, Publicação G.DM-274/2016, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 132 p.
- Buckingham, E. (1907). "Studies on the movement of soil moisture." Bull. 38, USDA, Bureau of Soils, Washington, DC.
- Cavalcante, A. L. B., & Zornberg, J. G. (2017). Efficient Approach to Solving Transient Unsaturated Flow Problems. I: Analytical Solutions. *International Journal of Geomechanics*, 1–17.
- Millington, R.J., (1959). Gas diffusion in porous media. *Science*, 130: 100-103.
- Rathie, P.N., Swamee, P.K., Cavalcante, A.L.B., Ozelim, L.C. de S.M. (2012). Lagrange's inversion theorem and infiltration. *World Academy of Science*. Engineering and Technology, Vol. 6, pp. 386-391.
- Rojas, K.R.C. (2017). Estudo Dos Deslizamentos Superficiais Deflagrados Por Chuvas Implementando a Análise Não Saturada e Transiente em Escala Regional. Dissertação de Mestrado, Publicação G.DM-291/2017, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 90 p.
- Ross, P. J. and Parlange, J.-Y. (1994). Investigation of a method for deriving unsaturated soil hydraulic properties from water content profiles, *Soil Sci.* 157(6), 335–340.
- Swamee, P.K., Rathie, P.N., Ozelim, L.C. de S.M. & Cavalcante, A.L.B. (2014). Recent advances on solving the three parameters infiltration equation. *Journal of Hydrology*. V. 509, pp. 188-192.